EFLX® Embedded FPGA
Popular & Proven in >20 Chips

eFPGA Adoption is Taking Off!

Multiple customers have built >>20 chips using EFLX eFPGA which all worked first time. Dozens more are in design across multiple process nodes and multiple applications.

Customers include Renesas, Boeing, Datang Telecom, Sandia Labs, DARPA, DoD, AFRL & many more that are not yet public. ASIC companies with eFPGA experience include Socionext, GUC, Alphawave and Synapse.

Customers use eFPGA so their SoCs can adapt to evolving standards, improving algorithms and customer’s value added logic. Applications use eFPGA for flexibility and for acceleration in Networking, Data Center, Wireless, Mixed Signal, MCU, IoT, Automotive and Aerospace.

Integrating eFPGA in your SoC Cuts Power+Cost 10x

✔ High density & high performance similar to commercial FPGA
✔ eFPGA Arrays of any size by tiling proven eFPGA IP Logic or DSP tiles
✔ Compatible with most metal stacks. Integrate RAM between tiles
✔ Silicon proven in TSMC 12/16, 28, 40 & GF 12 with evaluation boards
✔ Software tools with a Graphical User Interface
✔ Timing files extracted from design database and available across multiple corners
✔ High DFT test coverage both DC (>98%) and AC (>95%) for high quality test

First eFPGA TSMC IP Alliance Member

Flex Logix® is a TSMC IP Alliance Member based on the work it has done with TSMC over many years to develop embedded FPGA IP meeting TSMC9000 compliance for design methodology, validation in silicon & documentation. Flex Logix will continue to prove all EFLX® embedded FPGA IP in silicon with rigorous engineering checks and sign-offs.

TSMC 3/4/5/6/7/12/16/28/40, GF 12/22, Sandia 180

TSMC N3	EFLX 4K	In design: PPA under NDA
TSMC N5/N4	EFLX 4K	In design: PPA under NDA
TSMC N7/N6	EFLX 4K	Available - delivered to lead customer
TSMC 12FFC+/16FFC+	EFLX 4K	PROVEN IN SILICON
TSMC 12FFC+/16FFC+	EFLX 4K Low Power	In design; PPA under NDA
TSMC 28HPC/HPC+	EFLX 4K	PROVEN IN SILICON
TSMC 40ULP/LP	EFLX 1K	PROVEN IN SILICON
GlobalFoundries 12LP/12LP+	EFLX 4K	PROVEN IN SILICON
GlobalFoundries 12LP/12LP+	EFLX 4K RHBD	PROVEN IN SILICON
GlobalFoundries 22FDX	EFLX4K	Available - delivered to lead customer
Sandia 180	EFLX4K RH	PROVEN IN SILICON

Detailed product briefs are available for each EFLX core. Operating temperature range is -40C to +125C Tj. Multiple voltage ranges are supported. We can port in <12 months for other nodes.
EFLX Embedded FPGA
Fast, Dense eFPGA for your specs in your metal stack

Revolutionary Interconnect Enables Density and Scalability

Traditional FPGA fabrics are only 20% programmable logic: the programmable interconnect takes 80% of the area! Flex Logix has developed revolutionary new interconnects (XFLX™, ArrayLinx™, RAMLinx™) which enable eFPGA to be as fast as FPGA in the same node but use half the transistors and half the metal layers. Now you can integrate eFPGA without sacrificing performance or programmability and not have to change your metal stack or add metal layers. These interconnects are covered by numerous issued and pending patents in the USA and other countries.

Density & Performance Similar to Full Custom FPGA

The XFLX interconnect takes ~1/2 the area of traditional FPGA mesh interconnect, so even though we use standard cells for rapid implementation, we achieve density and performance similar to commercial FPGA. We use only 5-9 metals layers, so we are compatible with most metal stacks.

Able to Handle as Many Clocks as you need

With our newest Gen2.4 architecture we can handle 4 unique clocks and their inverses for each 4K LUT tile, and up to 64 unique clocks per array.

Embedded FPGAs from 1K to Millions of LUT4s

EFLX arrays are constructed from building blocks: the EFLX 1K core with ~1000 LUT4s and the EFLX 4K core with ~4000 LUT4s. They are complete FPGAs with programmable logic, programmable interconnect, I/O, clock circuitry and configuration logic. They also have a top level ArrayLinx Interconnect which is used to build arrays of larger size by “tiling” into arrays with no GDS change. Arrays can mix different tile types (each row must be the same type). The largest array implemented so far is 1/4 Million LUTs. In 2023 we will offer Millions of LUTs. Large arrays can have optional “pass through” channels for SoC routing if needed.

Thousands of Interface Pins for Bus Interfaces

A single EFLX4K core has >1000 interface pins: 632 in and 632 out; larger arrays have much more. You can connect EFLX embedded FPGAs into wide, fast buses and wide data and control paths; the interfaces are standard CMOS so they run very fast. Our new I/O tile offers even more interface pins.

Optional MACs for DSP/AI/ML Acceleration

EFLX cores are offered in DSP versions where some of the LUTs are replaced with Multiplier-Accumulator (MAC) blocks consisting of a 22-bit pre-adder, 22-bit multiplier and 48-bit accumulator which can be pipelined for very fast DSP implementations. For AI/ML, the multiplier can be configured as two 11x11 multipliers for double the throughput. MACs are pipelined 10-in-a-row; future EFLX tiles will pipeline 40.

Optional BRAM: Any Kind, Any Amount

BRAM (block SRAM) can be attached to the edge of your EFLX array using the input/output pins: you can attach any memory that you have since you control it. We integrate RAM in the array in any row between tiles: for this we have a standard, configurable RAM which can be configured as single-, two- or dual-port and configured as 32x1K, 16x2K, 8x4K or 4x8K. MBIST support is provided for array-integrated RAM. The EFLX Compiler will map RTL to RAM in the array.

Test and Reliability Features

Scan test vectors are available for stuck-at (DC) and transition-delay (AC) with high test coverage. Gen 2.4 DFT coverage is >98% stuck-at (DC) and >95% transition (AC) - we are constantly improving. Our enhanced Gen 2.4 architecture has special test modes that reduces test time by 5000x compared to our first generation. For arrays with integrated reconfigurable BRAM we provide shared memory bus interface and collateral for MBIST test. For High Reliability applications we have the ability to read back the configuration bits; and “scrubbing” is also possible to re-write configuration bits periodically.
EFLX eFPGA Applications
Make your SoC Adaptable for Changing Needs

Cut FPGA power/cost 10x by integration

With eFPGA you can integrate for FPGA into your SoC while keeping the performance and the flexibility. But you cut power and cost ~10x and double compute density. This is achievable because you get rid of the power-hungry PHYs and much of the FPGA is bussing that can be hardwared leaving the reprogrammable core. The largest eFPGA so far delivered to a customer is 240K LUTs. One of our customers is running their eFPGA at 500MHz over the full process range from -40C to +125C. Soon we will be able to deliver eFPGA of millions of LUTs.

Renesas “Micro” FPGAs, super low power

Renesas ForgeFPGAs use 40nm EFLX1K optimized for low power and power management. They sell in volume for <50 cents, are tiny and burn just milliwatts. Ideal for very high volume applications. Renesas’ tool chain incorporates Flex Logix’ EFLX Compiler for placement, routing, timing and bit file generation.

Fast Flexibility for MCUs+SoCs like Sandia Labs

4-8K LUTs of eFPGA on the IO bus can enable you or your customer to define any GPIO: any flavor of UART, any flavor of SPI, etc. No need to do a mask spin for an odd IO requirement or to force the customer to use an FPGA to interface. eFPGA on the compute bus gives a programmable co-processor that implements workloads like compression and encryption that use FPGA’s parallelism to run much faster than the host MPU. Sandia Labs uses EFLX both for flexible IO and for accelerators on their Dragonfly SoC, as they showed in their DAC presentation.

Integrating eFPGA on the processor buses reduces latency compared to external FPGA using a long latency PCIe interface. A processor with eFPGA can provide more performance than an external FPGA at much lower cost and much lower power, plus reduced board footprint and fewer voltage regulators.

Rad Hard eFPGA for Space

For Space applications, we can use Rad Hard Standard Cells for storage elements and design rules for clock lines and resets to improve tolerance to Single Event upsets. Synopsys Premier can be used to triplicate critical logic for further enhancements. Sandia 180 and a version of GF 12LP/LP+ are Rad Hard.
EFLX Embedded FPGA
All the tools you need

EFLX Compiler Software
The EFLX Compiler has been in use by dozens of customers for years. It is centered on a common database. It is driven using industry standard Tcl scripting APIs or an advanced GUI interface. Input is EDIF or Verilog generated by Synopsys Synplify or other synthesis tools. Timing constraints are specified using industry standard Synopsys Design Constraints (SDC). Timing can be analyzed at any step in the place and route flow to help optimize critical paths for high performance designs. Once timing is acceptable the EFLX compiler generates a bitstream for loading into the EFLX array for execution.

T16FFC, T28HPC+ & GF12 Evaluation Boards
Evaluation boards are available for TSMC 16FFC, TSMC 28HPC+ and GF 12LP. Bitstreams can be programmed using your Verilog to demonstrate at-speed performance and power. PVT monitors on chip so you can measure chip temperature and voltage. Interfaces to PC over USB.

Emulation Support
We support emulation models for EFLX Arrays, for exactly the size and features you specify, for Siemens Veloce and Cadence Palladium systems. These emulations models have been used extensively in development of customer SoCs to ensure right-the-first-time silicon.

Backed by Leading Venture Capital Investors
We have raised >$90 Million; our lead investors are Lux Capital, Eclipse Ventures and Mithril Capital. eFPGA sales exceed $30 Million and are growing.