

Challenges when Architecting Vision Inference Systems for Transformer Models

Al Hardware Summit September 2023 | Jeremy Roberson, Director of Inference SW | jeremy.roberon@flex-logix.com

Markets and application

Safety & security

Manufacturing & industrial optical inspection

Traffic & parking management Retail

Robotics

Agriculture

3

Embedded & Edge SoCs can benefit from AI Computer Vision

flexlogix

Typical Video and Vision Use cases

flexlogix

Jeremy Roberson, Director of Inference SW, Flex Logix, September 2023

4

- YOLOv3 example:
- Operator Types: 3x3, 1x1, FC
- Total Layers: 75
- Output is object detection and location for trained categories
- Operations per Inference: 178B at 608x608

Blind person and the elephant – Receptive Field is a big limitation

flex**logi**

CNN uses larger filter size and down-sampling to increase receptive field, but insufficient

The difference between CNN and transformer models & their feature extraction

CNNs provide results with limited context

flexlogix

- o Still uses ResNet or similar CNN backbone for feature extraction
- But, the transformer prediction head is fundamentally different:
 - Encoder will extract features across all "patches" to gather overall context
 - Decoder stages then makes prediction based on encoder results
 - Encoder/decoder computation is very different from CNNs, not suitable for traditional accelerators

flexlogix

Efficient data access: Each 1D TPU core can stream data from:

- Neighboring 1D TPU (dedicated)
- Any 1D TPU (via XFLX)
- L2 SRAM (via XFLX)
- DDR & System memory (via NoC)

Flexible control and data path:

- "Future proof" compute, activations, and generic operators via EFLX
- X1 provides much more data bandwidth and manipulation vs NoC based AI engine
- X1's flexibility include mixed-precision support essential for supporting operators such as transformers

Diving into Vision Transformers (1)

First encoder stage is positional encoding:

- PE values are embedded into EFLX RAMs as ROM
- EFLX logic performs ROM look up "on the fly" prior to the V/K/Q attention head

flexlogix

Diving into Vision Transformers (2)

Second encoder stage is the multi-head attention layer

- Starts by multiplying input data with 3 separate matrices
 (Q, K, V) for each attention head
- Natively maps onto our 1D-TPU with (Q, K, V) as weights

flexlogix

*https://jalammar.github.io/illustrated-transformer Jeremy Roberson, Director of Inference SW,

Flex Logix, September 2023

Diving into Vision Transformers (3)

Main part of multi-head attention layer is a challenge on traditional edge accelerators:

• The (Q, K, V) for each matrix is now activation data

Q×K^T involves multiplying 2 activation data with each other Fortunately, X1 chip has dedicated path to load activation

data into the weight memory

Flex Logix, September 2023

Diving into Vision Transformers (4)

Softmax and norm are also challenging on int8 datapaths

Fortunately, mixed-precision mode on X1 allows for
 z_i = Q×K^T result to convert to BF16 to execute exp(z_i)

softmax
$$\sigma(ec{z})_i = rac{e^{z_i}}{\sum_{j=1}^K e^{z_j}}$$

flexlogix

- After normalization, softmax output is converted back to int
- Another **activation**×**activation** is performed natively on X1 to complete the multi-head attention layer

*https://jalammar.github.io/illustrated-transformer Jeremy Roberson, Director of Inference SW, Flex Logix, September 2023

Diving into Vision Transformers (5)

Add & Normalization follows the multi-head attention layerThe original input is add with the attention output

• Normalization (esp. L2 norm) is best executed on BF16 due to its large dynamic range

L1 norm $||W||_1 = \sum_{i}^{n} |\omega_i|$ Squared L2 norm $||W||_2^2 = \sum_{i}^{n} \omega_i^2$ Feed-forward Network (TTN) is a straight-forward GEMM operation before Add & Norm takes place again

flexlogix

*https://jalammaferginthuberson, birector opinfedence 300, former Flex Logix, September 2023

How to deploy InferX models in your system?

flexlogix

16

InferX compiler is available for evaluation Today

17

InferX IP family scales from a single tile to a large accelerator

	prime 0.000	32 TOPS 1 LPDDR5	64 TOPS 2 LPDDR5	128 TOPS 4 LPDDR5
InferX (N7) Orin AGX 60W	/	90, VODH, TORTU-95, 76)		
16-128 DTOPs 138 DTOPS	16 TOPS 1 LPDDR5	vitnose, erray, w coper (TI, K. 3). Po Vioo+ Borritu-95,76	Jahmas array w apper (TLE 21 Johmas array w apper (TLE 31.	welman erray weapper/Tit.E.01 Witness erray weapper/Tit.E.11 witness erray weapper/Tit.E.21 witness erray waapper/Tit.E.31
1-4 LPDDR5 x32 LPDDR5 x256 (half for AI)	PD_UDDH_TOPTU-95.796)	аботока, когду интерреся7011—30. — роцьоф, расутствовани	Laifornas, autoy, weapper/TILE.20. P2.000,000,000,000,000,000,000,000,000,00	алістал штуу мизрел/ТІ.Г. 00 (алітал литуу мизрел/ТІ.Г. 10) (айтал литуу мизрел/ТІ.Г. 20) (айтал литуу мизрел/ТІ.Г. 30 200 (200 (200 (200 (200 (200 (200 (200
DETR 2020 (Transformer) (1024×1024)	19 IPS	39 IPS	77 IPS	147 IPS
YOLOv5s Orin (640×640) 125	AGX 200 IPS	330 IPS	716 IPS	1123 IPS
YOLOv5l6 (1280×1280)	12 IPS	19 IPS Ori 3	n AGX 1 IPS 43 IPS	100 IPS
ResNet50 (1024x1024)	29 IPS	39 IPS	84 IPS	197 IPS
		flexlogix	Jer Fle	emy Roberson, Director of Inference SW, x Logix, September 2023

Thank You

flex-logix.com

Flex Your Computing

© 2022 FLEX LOGIX PUBLIC