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AI Landscape at the Edge is Dominated by Vision
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Markets and application
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Embedded & Edge SoCs can benefit from AI Computer Vision
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Application-specific SoC

Typical Video and Vision Use cases
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Convolutional Networks have fundamentally changed computer vision, but still have limitations

• YOLOv3 example:

• Operator Types: 3x3, 1x1, FC

• Total Layers: 75

• Output is object detection and location for trained categories

• Operations per Inference: 178B at 608x608
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Blind person and the elephant – Receptive Field is a big limitation

https://en.wikipedia.org/wiki/Blind_men_and_an_elephant#:~:text=Th
e%20parable%20of%20the%20blind,the%20side%20or%20the%20tusk 
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CNN uses larger filter size and down-sampling to increase receptive field, but insufficient
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The difference between CNN and transformer models & their feature extraction

CNNs provide results 

with limited context

Transformer provide results in context

Receptive Field
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DETR 2020 - Combines CNN Backbone with Transformer-based Detector

o Still uses ResNet or similar CNN backbone for feature extraction

o But, the transformer prediction head is fundamentally different:

• Encoder will extract features across all “patches” to gather overall context

• Decoder stages then makes prediction based on encoder results

• Encoder/decoder computation is very different from CNNs, not suitable for traditional accelerators
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Efficient data access:

Each 1D TPU core can stream data from:

• Neighboring 1D TPU (dedicated)

• Any 1D TPU (via XFLX)

• L2 SRAM (via XFLX)

• DDR & System memory (via NoC)

Flexible control and data path:

ü “Future proof” compute, activations, and generic 

operators via EFLX

ü X1 provides much more data bandwidth and manipulation 

vs NoC based AI engine

ü X1’s flexibility include mixed-precision support – 

essential for supporting operators such as transformers

Dynamic TPU: Flexible, balanced & memory-efficient
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Diving into Vision Transformers (1)

CNN output

First encoder stage is positional encoding:

• PE values are embedded into EFLX RAMs as ROM

• EFLX logic performs ROM look up “on the fly” prior to the 

V/K/Q attention head
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Diving into Vision Transformers (2)

CNN output

Second encoder stage is the multi-head attention layer

• Starts by multiplying input data with 3 separate matrices 

(Q, K, V) for each attention head

• Natively maps onto our 1D-TPU with (Q, K, V) as weights

 

*https://jalammar.github.io/illustrated-transformer
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Diving into Vision Transformers (3)

CNN output

Main part of multi-head attention layer is a challenge on 

traditional edge accelerators:

• The (Q, K, V) for each matrix is now activation data

Q×KT involves multiplying 2 activation data with each other

• Fortunately, X1 chip has dedicated path to load activation 

data into the weight memory

Q0

W0

Q
K0 K Q×KTK
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Diving into Vision Transformers (4)

CNN output

Softmax and norm are also challenging on int8 datapaths

• Fortunately, mixed-precision mode on X1 allows for 

zi = Q×KT result to convert to BF16 to execute exp(zi)

• After normalization, softmax output is converted back to int

• Another activation×activation is performed natively on X1 to 

complete the multi-head attention layer

*https://jalammar.github.io/illustrated-transformer

softmax
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Diving into Vision Transformers (5)

CNN output

Add & Normalization follows the multi-head attention layer

• The original input is add with the attention output

• Normalization (esp. L2 norm) is best executed on BF16 

due to its large dynamic range

• Feed-forward Network (FFN) is a straight-forward GEMM 

operation before Add & Norm takes place again

*https://jalammar.github.io/illustrated-transformer

L1 norm

Squared 

L2 norm
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How to deploy InferX models in your system? 
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InferX compiler is available for evaluation Today
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InferX IP family scales from a single tile to a large accelerator

DETR 2020 (Transformer)

(1024×1024)
19 IPS 39 IPS 77 IPS 147 IPS

YOLOv5s

(640×640)
200 IPS 330 IPS 716 IPS 1123 IPS

YOLOv5l6

(1280×1280)
12 IPS 19 IPS 43 IPS 100 IPS

ResNet50

(1024x1024)
29 IPS 39 IPS 84 IPS 197 IPS

16 TOPS

1 LPDDR5

InferX (N7) Orin AGX 60W

16-128 DTOPs 138 DTOPS

1-4 LPDDR5 x32 LPDDR5 x256 

(half for AI)

Orin AGX

125 IPS

Orin AGX

31 IPS

32 TOPS

1 LPDDR5

64 TOPS

2 LPDDR5

128 TOPS

4 LPDDR5
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